10.3 Chemische Untersuchung an Töpfen aus den Latrinen 1–5

Willem B. Stern, Geochemisches Labor der Universität Basel

Typologisch ähnliche Scherben einer Gebrauchskeramik finden sich in verschiedenen Latrinen. Makroskopisch sind Unterschiede bezüglich Magerung und Brand feststellbar, und es erhebt sich die Frage,

 ob die stoffliche Heterogenität innerhalb eines Objekts (z.B. eines Topfes) ähnlich ist wie die chemische Variationsbreite typologisch ähnlicher Stücke aus einem Fundkomplex oder kleiner.

– ob typologisch ähnliche Keramik aus verschiedenen Latrinen eine ähnliche chemische Zusammensetzung aufweist, oder ob ein "latrinenspezifischer" Chemismus existiert (typologisch ähnliche Ware, aber unterschiedliche Herkunft).

– ob typologisch ähnliche Keramik aus anderen Fundstellen in Basel sich chemisch abgrenzen lässt.

- ob stoffliche Unterschiede zwischen Scherben ungleichen Brandes belegbar sind.

 um welches Mineral es sich bei der makroskopisch sichtbaren weissen Magerung handelt.

A priori wurde eine bedeutende stoffliche Ähnlichkeit der Scherben untereinander vermutet, weswegen eine analytische Methode gewählt wurde, die eine geringe Fehlerbandbreite aufweist und die gesamte Scherbe repräsentiert. Da Teilproben entnommen und für eine quantitative Analyse aufbereitet werden durften, bot sich als Methode die quantitative, wellenlängen-dispersive Röntgenfluoreszenzspektrometrie (WD-XFA) an.

Von jeder zu untersuchenden Scherbe wurde in der Regel eine Teilprobe von wenigen Gramm Gewicht entnommen und staubfein gemahlen. Nach Glühen bei 1000 °C wurden von jeder Teilprobe zwei Schmelzpräparate hergestellt (STERN 1979) und analysiert.

Die chemische Zusammensetzung einer keramischen Scherbe hängt nicht nur von der Beschaffenheit des verwendeten Tones als Ausgangsmaterial ab, sondern auch von Art und Menge der Magerung. Da die Menge dieses Zuschlages nicht ohne weiteres fassbar ist, kann die chemische Durchschnittsanalyse keine direkte Auskunft geben über die Zusammensetzung des verwendeten Tones; direkte Herkunftszuweisungen sind damit grundsätzlich unmöglich, auch wenn eventuelle Tongruben bekannt und heute noch zugänglich wären – was in der Regio Basiliensis nur selten der Fall ist. Hingegen eignen sich die Analysenergebnisse, um auf die eingangs gestellten Fragenkomplexe einzugehen.

Ein grundsätzliches Problem ergibt sich aus der grossen Anzahl möglicher Variabler (Brand, Magerung, div. Fundkomplexe) einerseits und der notwendigen Beschränkung der Analysenzahl auf ein arbeitstechnisch vertretbares Mass andererseits. Es leuchtet ein, dass aus einer einzelnen Analyse keine Aussagen über mögliche stoffliche Variabilitäten abgeleitet werden können. Die Probenentnahme wurde deshalb im wesentlichen auf die beiden Latrinen 1 und 3 beschränkt (XIV. Anhang: Tab. S. 234).

Latrine 1:

homogen gebrannt: 5 Stücke, davon 3 fein gemagert Wechselbrand: 11 Stücke, davon 8 fein gemagert Latrine 3:

homogen gebrannt: 15 Stücke, davon 5 fein gemagert Wechselbrand: 11 Stücke, davon 6 fein gemagert Aus den Latrinen 4 und 5 sind je zwei Scherben analysiert worden. Dem Latrinen-Kollektiv wurden 4 Scherben anderer Herkunft als Kontrast gegenübergestellt (Gruppe 9).

Werden von einem Objekt zwei Teilproben getrennt aufbereitet und analysiert, so zeigt sich eine markante Übereinstimmung der chemischen Hauptkomponenten (XIV. Anhang: Diagramme 10,12,14). In der Tat liegen die Projektionspunkte der Teilproben jeweils innerhalb des analytisch-messtechnischen Streubereiches der quantitativen Analyse.

Das Scherbenmaterial aus den Latrinen 1 und 3 ist stofflich insgesamt heterogen; die Variationsbreite innerhalb eines Latrinenkomplexes scheint grösser zu sein als jene von Latrine zu Latrine, so dass ein chemischer Unterschied zwischen Scherben von Latrine 1 und 3 nicht generell nachweisbar ist. Es gibt somit keinen Hinweis dafür, dass die Scherben in Latrine 1 und 3 aus unterschiedlicher Produktion stammen müssten. Die grosse chemische Heterogenität widerspiegelt die makroskopische Vielfalt – grobe/feine Magerung, Glanzton, Rostbruch etc., die pro makroskopische Gruppe letztendlich nur wenige Scherbenindividuen terminiert. Je kleiner aber die Individuenzahl pro Gruppe ist, desto schlechter ist eine stoffliche Ähnlichkeit oder Unähnlichkeit aus prinzipiellen Gründen fassbar.

Werden Wechselbrand und homogener Brand einander gegenübergestellt (XIV. Anhang: Diagramme 11– 14), so sind systematische Unterschiede zwischen beiden weder für Latrine 1 noch für Latrine 3 belegbar. Allenfalls mag es einzelne Untergruppen geben, die sich von anderen abheben, so z.B. drei homogene Scherben (d) mit hohem Al₂O₃-Gehalt gegenüber zwei Scherben mit geringem Al₂O₃-Gehalt in Diagramm 11, oder fünf heterogene Scherben (w) mit geringem SiO₂-Gehalt gegenüber vier mit hohem SiO₂-Gehalt in Diagramm 12. Die geringe Grösse dieser Teilpopulationen lässt eine sichere Aussage aber nicht zu.

Keramikproben aus anderen Grabungen (Gruppe 9) weisen generell eine durchaus vergleichbare chemische Zusammensetzung auf wie die Materialien aus den Latrinen 1, 3– 5, vgl. Diagramme 8, 15 und 16.

Die makroskopisch gut erkennbare weisse Magerung besteht nicht aus Quarz, wie zunächst vermutet worden war, sondern aus Kalifeldspat (Diagramm 18). Feldspat kommt in der näheren Umgebung Basels in erster Linie im Schwarzwald anstehend und als Verwitterungsprodukt in Alluvionen vor.

XIV. Anhang

1. Diagramme 1–18 und Tabelle

Gesamthöhe

• Hals-Radius a. Diagramm 4 Polynom - Regression: (N = 55) $y = a + bx + cx^{2} + dx^{3} ...$ a = 1.448321 b = 0.228605Korrelationskoeffizient = 0.949895

• Bauchradius Diagramm 5 Polynom - Regression: (N = 56) $y = a + bx + cx^{2} + dx^{3} ...$ a = 0.824863 b = 0.499597Korrelationskoeffizient = 0.983996

• Fassung Diagramm 6 Polynom - Regression: (N = 56) $y = a + bx + cx^{2} + dx^{3}...$ a = -3.253963 b = 0.668638 c = -0.044343 d = 0.001465Korrelationskoeffizient = 0.995573

226

Polynom - Regression: (N = 56) $y = a + bx + cx^{2} + dx^{3} ...$ a = -3.434480 b = 0.713438 c = -0.047124d = 0.001536

Diagramm 7

Korrelationskoeffizient = 0.995604

Diagramm 8. Die chemischen Variationsbreiten einzelner, makroskopisch erkennbarer Hauptgruppen aus den Latrinen 1, 3, 4 und 5 sowie der Referenzgruppe 9. F = Gruppeunterschiedlicher Farbe, meist mit starkem Wechselbrand, oft mit sog. Rostbruch; G =Glanzton, meist mit viel grober Feldspatmagerung; O = normale, feine Magerung, zuweilen heller Farbe; S = Sonderformen.

Diagramme 9 und 10. Die chemischen Hauptkomponenten SiO_2 , Al_2O_3 , Fe_2O_3 , CaO und K_2O in Quotientendarstellung. Die Zahlen beziehen sich auf die Latrinen 1 und 3. Eingekreist und mit Strichen verbunden sind die zur selben Scherbe gehörigen Analysen.

228

Diagramme 11 und 12. Die chemischen Hauptkomponenten SiO₂ und Al₂O₃ von Scherben aus Latrine 1 (oben) und 3 (unten), differenziert nach makroskopischer Heterogenität: Wechselbrand (w), durchgehend gleich gebrannt (d). Eingekreist und mit Strichen verbunden sind die zur selben Scherbe gehörigen Analysen. Das Kreuz in der unteren Graphik zeigt den messtechnischen Fehlerbereich der quantitativen Analyse an ("Fehlerkreuz").

Diagramme 13 und 14. Die chemischen Hauptkomponenten Fe_2O_3 und K_2O von Scherben aus Latrine 1 (oben) und 3 (unten), differenziert nach makroskopischer Heterogenität: Wechselbrand (w), durchgehend gleich gebrannt (d). Eingekreist und mit Strichen verbunden sind die zur selben Scherbe gehörigen Analysen. Das Kreuz in der unteren Graphik zeigt den messtechnischen Fehlerbereich der quantitativen Analyse an ("Fehlerkreuz").

Diagramme 15 und 16. Chemische Hauptkomponenten aller analysierter Scherben aus den Latrinen 1, 3, 4 und 5 sowie der Referenzgruppe 9; diese ist chemisch nicht von den Latrinenkomplexen unterscheidbar.

SPECTRACE INSTRUMENTS

SPECTRUM : 68.13709BRN/5M	OVERLAP SPECTRUM : 68.1370BRC/5M
(line) "Rost" auf Bruch	(dots) "frische" Kante
TUBE VOLTAGE : 10 KV TUBE CURRENT : 0.10 mA ATMOSPHERE : VACUUM	FILTER USED : NO FILTER LIVETIME : 200 SEC

Diagramm 17. Energiespektrum (energie-dispersive Röntgenfluoreszenzanalyse, ED-XFA) einer Scherbe (1968.1370) mit oxydierten Eisenpartikeln an der Bruchkante. Der Eisengehalt ist nicht höher als bei einer Scherbe mit frischer Bruchkante.

SPECTRACE INSTRUMENTS

SPECTRUM : MAGERG/2MM

TUBE VOLTAGE	:	10 KV	FILTER USED	:	NO FILTER
TUBE CURRENT	:	0.80 mA	LIVETIME	:	200 SEC
ATMOSPHERE	:	VACUUM			

Diagramm 18. Energiespektrum (energie-dispersive Röntgenfluoreszenzanalyse, ED-XFA) einiger Magerungskörnchen aus Probe Nr. 68.1357. Die als Hauptkomponenten sichtbaren Elemente SiO₂, Al₂O₃, K₂O, Na₂O, Fe₂O₃ weisen auf das Mineral Alkali-/Kalifeldspat hin. Das Röntgenbeugungsbild (nicht dargestellt) weist eindeutig Feldspat als kristalline Komponenten aus, nicht aber Quarz.

F.S. = 4K

QUANTXV.QAN			DATE 1991	si02 %	Al203 %	Fe203 %	MnO %	MgO %	CaO %	Na20 %	К20 %	ТіО2 %	P205 %
Mittelwert	e		1992										
XV8206/L1-3920 XV8190/L1-1251 XV8208/L1-1264 XV8185/L1-1265 XV8181/L1-1248	1 d 1 d 1 d 1 d	S? 0 0 0 5	02- Jun 01- Jun 02- Jun 01- Jun 01- Jun	66.51 70.91 67.25 68.91 70.62	19.04 16.46 19.38 18.65 15.15	5.890 4.850 5.908 5.248 5.131	0.088 0.029 0.032 0.030 0.088	1.18 1.10 1.13 1.25 1.81	0.91 1.04 0.55 0.64 1.02	0.28 0.37 0.32 0.29 1.74	3.96 4.12 4.13 3.76 3.46	0.86 0.73 0.90 0.85 0.64	1.07 0.18 0.19 0.16 0.19
XV8147/L1 1219+25 XV8173/L1-1218 XV8165/L1-1216 XV8161/L1-1252 XV8159/L1 1247 XV8151/L1 1255 XV8179/L1-1254 XV8210/L1-3940+1246 XV8200/L1-1253+3937 XV8163/L1-1250 XV8155/L1 1261	1 w w w w w w w w w w w w w w w w w w w	H H O O O F R R	20-May 01-Jun 01-Jun 20-May 20-May 01-Jun 02-Jun 02-Jun 01-Jun 20-May	73.15 72.34 71.31 68.47 69.70 70.18 68.56 71.63 70.06 71.76 73.45	15.62 16.47 16.66 17.59 17.08 16.88 17.40 15.77 17.09 15.98 15.84	4.181 3.934 3.502 5.461 5.638 5.208 5.246 3.892 4.962 4.236 3.849	0.018 0.024 0.018 0.032 0.032 0.029 0.068 0.016 0.032 0.019 0.015	0.86 1.03 1.13 1.45 1.10 1.01 1.20 0.93 1.23 1.12 0.87	0.68 0.52 0.99 0.86 0.78 0.90 0.97 1.08 0.75 0.79 0.53	0.36 0.48 0.47 0.54 0.37 0.55 0.63 0.34 0.24 0.47 0.27	3.82 3.97 3.97 3.85 3.93 3.71 4.01 4.50 3.92 3.92 3.93	0.67 0.68 0.73 0.81 0.74 0.80 0.66 0.84 0.68 0.70	0.47 0.32 0.97 0.66 0.38 0.61 0.88 0.95 0.63 0.75 0.37
XV8175/L3-4032 XV8149/L3 4023 XV7875/L3-1384 XV8157/L3 4038 XV7869/L3-4045 XV8196/L3-1391 XV8194/L3-1357 XV8155/L3-1357 XV8155/L3-1392b XV7859/L3-1392b XV7881/L3-1392b XV7881/L3-1392b XV8169/L3-4053 XV8143/L3-b XV7879/L3-1370b XV8192/L3-1341	33333333333333333333333333333333333333	G G G G G G N N O O O R R S	01-Jun 20-May 17-May 20-May 02-Jun 02-Jun 20-May 01-Jun 09-May 01-Jun 20-May 17-May 02-Jun	72.81 73.46 68.15 71.74 68.57 72.95 73.13 69.42 70.13 69.97 69.15 68.82 70.30 65.98 72.24	15.60 16.09 17.16 16.44 17.53 15.25 15.93 17.47 17.08 16.25 17.74 17.11 16.68 15.03	4.333 4.176 4.841 4.973 5.158 4.608 3.850 5.423 4.681 4.772 4.913 4.823 4.823 4.772 4.492 4.505	0.026 0.018 0.114 0.022 0.026 0.026 0.026 0.019 0.069 0.037 0.013 0.012 0.077 0.026 0.026 0.046 0.081	1.02 0.88 1.38 0.94 1.30 1.01 1.07 1.13 1.19 1.25 1.34 1.13 1.29 1.69	0.54 0.34 0.98 0.50 0.52 0.61 0.71 0.71 0.76 0.67 0.65 0.90 0.57 1.05 0.92	0.38 0.25 0.24 0.45 0.37 0.24 0.45 0.45 0.45 0.45 0.15 0.15 0.64 0.60 0.38 0.92	4.19 3.70 4.22 3.97 3.70 4.07 3.95 4.19 3.80 3.89 4.10 4.18 4.09 3.31	0.64 0.70 0.78 0.74 0.77 0.68 0.72 0.75 0.75 0.71 0.74 0.79 0.76 0.75 0.65	0.22 0.14 0.55 0.16 0.33 0.19 0.12 0.25 0.38 0.49 0.36 0.52 0.37 0.59 0.43
XV8167/L3-1339 XV8198/L3-1401+03 XV7857/L3-3990b XV7863/L3-1389 XV8204/L3-1379 XV7851/L3-3990a XV7877/L3-1412 XV8183/L3-1359 XV8141/L3-a XV8171/L3-1419 XV7865/L3-1370a XV8153/L3 1402	************	N 0 0 0 0 0 R R R S	01-Jun 02-Jun 09-May 02-Jun 09-May 17-May 01-Jun 20-May 01-Jun 09-May 20-May	70.56 69.24 66.36 66.98 72.83 66.62 66.98 70.30 70.90 72.09 66.86 77.53	16.62 17.85 16.83 15.74 16.03 16.58 15.42 16.99 16.51 16.56 16.52 11.90	4.589 4.665 4.265 4.635 3.930 4.295 4.299 4.441 4.769 3.590 4.461 4.411	0.032 0.076 0.015 0.013 0.019 0.018 0.027 0.028 0.036 0.021 0.044 0.062	1.21 1.26 1.33 1.26 0.94 1.33 1.17 1.00 1.09 1.22 1.34 1.09	0.68 0.85 1.19 0.67 1.28 1.90 0.82 0.74 0.98 0.89	0.75 0.47 0.23 0.32 0.38 0.44 0.65 0.36 0.37 0.33 0.48	4.17 4.13 4.08 4.01 4.14 4.12 4.21 4.06 3.96 3.93 2.50	0.69 0.82 0.74 0.72 0.72 0.72 0.72 0.73 0.73 0.79 0.76 0.57	0.45 0.37 0.75 0.82 0.35 0.90 0.64 0.62 0.46 0.40 0.32 0.44
XV7853/L4-4179 XV7873/L4-4132	4 d 4 w	0 G?	09-May 17-May	68.77 68.53	16.62 17.27	5.097 5.739	0.103 0.018	1.35	0.89 0.56	0.08 0.31	3.75 3.96	0.73 0.73	0.65 0.21
XV8202/L5-1537 XV8187/L5-4202	5 d 5 d	G S	02-Jun 01-Jun	65.39 71.54	19.14 14.79	5.651 4.866	0.038 0.070	1.37 1.59	0.92 1.00	1.19 1.54	4.59 3.14	0.64 0.80	0.78 0.22
XV7871/1968.3293b XV7855/197?.5590 XV7861/1968.3293a XV7849/1968.Graben47	9 9 9 9	0 0 0	17-May 09-May 09-May 09-May	70.28 69.45 71.01 70.49	15.75 15.58 15.37 16.41	4.753 3.653 4.964 4.766	0.016 0.016 0.016 0.022	1.20 1.18 1.19 1.16	1.02 0.94 0.74 0.62	0.18 0.37 0.22 0.38	3.88 4.24 3.91 3.92	0.69 0.64 0.70 0.68	0.60 0.58 0.38 0.20

Tabelle: Quantitative Analysen (WD-XFA) von Scherben aus den Latrinen 1, 3, 4 und 5 der Grabung Augustinergasse 2 in Basel (9 = Referenzgruppe): d durchgehend gebrannt; F Ton verschiedenfarbig; G Glanzton; H heller Ton; N Kalkmagerung; O normal; R Rostbruch; S Sonderformen; w Wechselbrand.